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Abstract
The charge-symmetric pseudo nucleus pdµ can be formed in the cascade
process in the muon catalyzed fusion. The nuclear fusion of the pdµ molecular
ion can be considered in the photon field. For the spin states of the pdµ system
(L = 0), the radiative fusion rates are calculated employing a new spatial
wavefunction. The method takes into account the Coulomb interactions for
the calculation of the molecular wavefunction. The related pd astrophysical
factors are used, essentially extracted from experimental determinations.

PACS numbers: 03.65.Ge, 25.30.−c, 36.10.Dr

1. Introduction

The different results of calculations of fusion rates in the pdµ molecule reflect different
approximations in the solution to the Schrödinger equation for three particles. The main
uncertainty is associated with the results at small distances. When the adiabatic expansion
is used; the important problem of convergence of the expansion at small distances is
usually ignored. Such problems vanish if the direct solution of the Fadeev equations in
the configuration space is performed [1–3]. More accurate approaches treat the nuclear force
dynamically by directly incorporating it as a complex potential in the three-body Hamiltonian
[4, 5], or as complex boundary conditions at the nuclear surface [6, 7]. These elaborate
approaches agree rather well with each other, as well as with the simple factorization approach.
All of the mentioned methods include a large volume of calculations. We consider the
molecular and nuclear reactions of pdµ using a simple wavefunction to pdµ. The pdµ

molecule is a good example of using µCF as a probe of nuclear reactions in few body systems
[8, 9]. The radiative and non-radiative fusions can take place in this ion. The pdµ is one of
the molecular ions which are not resonantly formed [10]. The Auger process dominates for its
molecular states with binding energy larger than the ionization potential. Therefore, the study
of the mentioned ion could be of interest in the Ramsauer–Townsend (RT) effect [10] in the
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µd + p scattering. The elastic scattering cross section has a deep minimum corresponding to
zero of the s-wave scattering amplitude. As a result, hydrogen becomes nearly transparent for
the muonic atom µd in the corresponding energy range. This effect is used in the TRIUMF
experiment [11] where the µd atom is produced following µ transfer from muonic protium
in a layer of solid hydrogen with a small fraction of deuterium. The emitted muonic atoms
are used for measurements of the energy dependence of various reactions by the time-of-flight
method. This paper is organized as follows. In section 2 we describe the theoretical framework
of fusion calculations of the pdµ molecule, accounting for both the Coulomb potential and
the nuclear factors. We develop the formulae including a new wavefunction for the estimation
of the fusion rate in the photon field. In section 3, we summarize the paper and mention the
future perspectives of this study as conclusions.

2. Transition in the µ-catalyzed pd fusion

The fusion via the nuclear reaction

(µ− + d) + p → 3He + µ− + 5.5 MeV (1)

was observed by Alvarez et al in the Berkeley laboratory [12]. This internal conversion
competes with the more common radiative capture:

(µ− + d) + p → pdµ → (3He + µ−) + γ, (2)

where the final muon is most likely to reside in the first atomic level of the residual He
atom [13]. For the nuclear fusion process, the initial proton with spin 1/2 and deuteron with
spin 1 can reside in the states with 3/2(quartet) or 1/2 (doublet). The M1 (doublet) and
(quartet) radiative capture transitions in the p–d system provide a critical testing ground for
modern three-body calculations. Some of previous measurements of these transitions have
been obtained from a precision study [9] of the pdµ fusion cycle. In that experiment, the
Wolfenstein–Gerstein effect [14] was employed to vary the relative amounts of S = 1/2 and
S = 3/2 nuclear spins in the pdµ molecule prior to fusion. The results indicated a doublet
fusion rate of 0.35(2) × 106 s−1 and a quartet fusion rate of 0.11(1) × 106 s−1. Shortly
thereafter, the transition rates for the M1 radiative capture in both the quartet and doublet
initial states were obtained in an ab initio three-body calculation [15]. This calculation was
performed with realistic NN interactions, including the three-body and Coulomb interactions,
and, especially important for the case of the M1 transitions in 3He, it used explicit meson-
exchange currents which had been parameterized to fit the thermal n–d capture cross section.
The results of this calculation were in excellent agreement with the above experimental fusion
rates. Furthermore, it was found that while the quartet capture is largely given by the impulse
approximation, the doublet capture had very large exchange-current contributions. The result
of that work resolved the so-called anomaly in the Wolfenstein–Gerstein effect, which was
based on an erroneous no-quartet theorem [16]. The present work reports a new determination
of the radiative fusion rate of pdµ in the muon catalyzed fusion, µCF, using the quartet and
doublet experimental astrophysical factor (s-wave). The physical behavior at low energies is
expected in the µCF. The pdµ molecule works as a partial-wave filter: the fusion always
takes place in the ro-vibrational ground state of the µpd (as soon as the molecule is formed,
it de-excites to the state (J, ν) = (0, 0) much faster than the fusion occurs), so that the pd

system has the relative angular momentum L = 0 (s-wave). The radiative fusion rates depend
on the total nuclear spin �spd = �sp + �sd . The radiative fusion rates including the quartet and
doublet rates λ

γ

3/2, λ
γ

1/2 are given by the formulae [15]:

λ
γ

3/2 = S3/2(0)

παcm3
ρ0, λ

γ

1/2 = S1/2(0)

παcm3
ρ0, λγ = 1

3
λ

γ

1/2 +
2

3
λ

γ

3/2 = S(0)

παcm3
ρ0 (3)
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Figure 1. The three-channel configurations 1, 2 and 3.

where m3 is the reduced mass of the two-body system of pd. S(0) denotes (s-wave) the
astrophysical factor for p–d capture at zero energy, which includes the two terms as

S(0) = (S1/2 + 2S3/2)/3. (4)

These terms in laboratory experiments are given by

S1/2(0) = 2π

3
α2m3c

2
[ ω

h̄c

]3
[

h̄

2mc

]2 ∣∣∣〈ψsn= 1
2

He

∣∣∣ M1
∣∣∣ψL=0,spd= 1

2
pd

〉∣∣∣2
,

(5)

S3/2(0) = π

3
α2m3c

2
[ ω

h̄c

]3
[

h̄

2mc

]2 ∣∣∣〈ψsn= 1
2

He

∣∣∣M1
∣∣∣ψL=0,spd= 3

2
pd

〉∣∣∣2
.

The relations above show that the radiative capture can be performed in M1 transitions. ω is

the frequency of photon γ , m being the mass of a nucleon (p or n). ψ
sn= 1

2
He and ψ

L=0,spd

pd are
the wavefunctions of 3He nucleus and p–d state, respectively. The notation ρ0 is used for the
molecular probability density of fusion in zero nuclear distance:

ρ0 =
∫

|ψI (�rµ, �rpd = 0)|2 d�rµ d	�rpd
(6)

where ψI is the spatial wavefunction of pdµ. This wavefunction is needed for the rate
calculations. We study the spatial situation of the pdµ molecule in the three coupled
channels as follows. (dµ)–p, (pµ)–d and (pd)–µ are referred to channels c = 1, 2 and 3,
respectively, and their Jacobian coordinates (�rc, �Rc) are defined as in figure 1. We introduced
the reduced masses (mc,Mc) which are associated with (�rc, �Rc). The mentioned masses
are given by m−1

1 = m−1
d + m−1

µ ,M−1
1 = m−1

p + (md + mµ)−1,m−1
2 = m−1

p + m−1
µ ,M−1

2 =
m−1

d + (mp + mµ)−1,m−1
3 = m−1

µ + (mp + md)
−1 and M−1

3 = m−1
p + m−1

d . The spatial
wavefunction of pdµ and the Hamiltonian H are introduced respectively as

ψI =
3∑

c=1



(c)
JM(�rc, �Rc)YJ,M(R̂c) = 1√

4π

3∑
c=1

{A′
c exp(−|β ′

c �rc + βc
�Rc|)

+ Ac exp(−|α′
c �rc + αc

�Rc|)}χ
J,ν
c (Rc)

Rc

YJ,M(R̂c), (7)

H = − h̄2

2mc

∇2
�rc

− h̄2

2Mc

∇2
�Rc

+ VC(�rc, �Rc). (8)

The expansion coefficients are optimized versus the sets of parameters
{
β( )

c

}
and

{
α( )

c

}
, by the

Rayleigh–Ritz formula. Use of the form of equation (7) for the wavefunction, rather than some
functions, makes the transformation between the three sets of the Jacobian coordinates simpler.
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The coupled channel method is also applied in the muon-induced fission [17]. Karpeshin
used the complex trajectory method and discussed the interplay of different channels in the
scattering problem [17]. In the present method alternative to [17] and others [5, 18], some of the
components of the three-body wavefunction have the analytical forms, and other components,
χc(Rc), are calculated numerically. We make integrations on the muon coordinate in each
channel separately, and simplify the Rayleigh–Ritz formula as follows:

〈YJM(R̂c)|H − E|ψI 〉�rc,R̂c
= 0 and c = 1, 2 and 3. (9)

Here, 〈 〉�rc,R̂c
denotes the integration over �rc and R̂c. In the three types of Jacobian coordinates,

we have

−2h̄2

Mc

{
A′

c

β ′3
c

+
Ac

α′3
c

} (
d2

dR2
c

− J (J + 1)

R2
c

)
χJ,ν

c (Rc)

−
{
A′

c

(
h̄2

Mcβc

+
h̄2

mcβ ′
c

)
+ Ac

(
h̄2

Mcαc

+
h̄2

mcα′
c

)
− V c

eff(Rc)

}
χJ,ν

c (Rc)

= 4εJ,ν

{
A′

c

β ′3
c

+
Ac

α′3
c

}
χJ,ν

c (Rc) −
∫ ∞

0
V c,c′

(Rc, Rc′)χ
J,ν
c′ (Rc′) dRc′

−
∫ ∞

0
V c,c

′′
(Rc, Rc

′′ )χ
J,ν
c′′ (Rc′′) dRc′′ ,

(c, c′, c′′) = (1, 2, 3), (2, 3, 1) and (3, 1, 2), (10)

where

V c,c()

(Rc, Rc() ) = −RcRc()〈YJM(R̂c)|YJM(R̂c() )〉
{
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(
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h̄2
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c()

)
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(
h̄2
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+
h̄2
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)
− 4

(
A′

c()

β ′3
c()

+
Ac()

α′3
c()

) (
h̄2

2Mc()

J (J + 1)

R2
c()

− εJ,ν

)}
.

(11)

where V c
eff(Rc) is the effective potential involving linear-exponential integrals,

V c
eff(Rc) =

4∑
i=1

V
c,i

eff (Rc) and c = (1, 2, 3), (12)

which are obtained as

V
1,1

eff (R1) = A′
1 e2

β ′
1β1R1

∫ ∞

0
{e−|β ′

1r
′+β1R1|(|β ′

1r
′ + β1R1| + 1)

− e−|β ′
1r

′−β1R1|(|β ′
1r

′ − β1R1| + 1)} dr ′, (13)

V
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1, β

′
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′
1, α1}), (14)

V
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1 e2

δ2
1R1β

′
1(δ1β1 + β ′
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0
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}

dr ′
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δ′
1

2
R1β

′
1(δ

′
1β1 − β ′

1)

∫ ∞

0

{
e
− 1

δ′1
|β ′

1r
′+(δ′

1β1−β ′
1)R1|

(|β ′
1r

′ + (δ′
1β1 − β ′
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− e
− 1

δ′1
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′−(δ′

1β1−β ′
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(|β ′
1r

′ − (δ′
1β1 − β ′

1)R1| + δ′
1)

}
dr ′,

δ1 = md/(mµ + md) and δ′
1 = 1 − δ1, (15)
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V
1,4

eff (R1) = V
1,3

eff (R1; {A′
1, β

′
1, β1} → {A1, α

′
1, α1}), (16)

V 2
eff(R2) = V 1

eff({R1, δ1, δ
′
1} → {R2, δ2, δ

′
2}), δ2 = mp/(mµ + mp), (17)

V
3,1

eff (R3) = A′
3 e2

R3β
′
3(β3 + δ3β

′
3)

∫ ∞

0
{e−|β ′

3r
′+(β3+δ3β

′
3)R3|(|β ′

3r
′ + (β3 + δ3β

′
3)R3| + 1)

− e−|β ′
3r

′−(β3+δ3β
′
3)R3|(|β ′

3r
′ − (β3 + δ3β

′
3)R3| + 1)} dr ′,

δ3 = mp/(md + mp), (18)

V
3,2

eff (R3) = V
3,1

eff (R3; {A′
3, β

′
3, β3} → {A3, α

′
3, α3}), (19)

V
3,3

eff (R3) = 4
A′

3 e2

β ′3
3R3

+ V
3,1

eff (R3; δ3 → δ3 − 1),

(20)

V
3,4

eff (R3) = 4
A3 e2

α′3
3R3

+ V
3,2

eff (R3; δ3 → δ3 − 1).

The energy E and the radial wavefunctions are obtained versus the ro-vibrational quantum
numbers, E → εJ,ν . The optimal values for the molecular parameters are given in table 1.
The obtained value of ε0,0 is −221.568 eV, close to the previously reported [10, 19]. The
pervious energy value of the ground state of pdµ was −221.55 eV. The channel c = 3 is the
most important to determine the fusion rate in the nuclear fusion region. For this purpose,
we obtain the probability density versus the nuclear distance by the integration over the muon
coordinate in the channel c = 3 as follows:

ρrpd
=

∫
|ψI ( �rµ, �rpd)|2 d�rµ d	�rpd

. (21)

In our calculations, since A3
∼= A′

3 and β ′
3 = α′

3, the probability density equals

ρ0
∼= lim

R3→0

∣∣χJ=0,ν=0
3 (R3)

/
R3

∣∣2
, (22)

for the small distances. The adiabatic picture was also used for the classification of the
molecular states εJ,ν in the previous methods [10, 19]. In particular, the local characteristic
such as the probability density (6) was calculated using the 15 terms of the adiabatic hyper-
spherical expansion [10, 19]. In this method [10, 19] and also in the Faddeev equations [1–3],
the applied wavefunctions and the potential terms have different forms than those of our work.
The theoretical description of the p + d → 3He + γ , at low energy physics, is complicated
by the presence the Coulomb interaction. Only relatively recently has the s-wave capture
contribution to the zero energy astrophysical factor of this reaction. It has been calculated
with the numerically converged Faddeev wavefunctions [15]. Friar et al calculated this nuclear

factor using equation (5). The calculated values for S(0) and the ratio
√

S3/2(0)

S1/2(0)
have been found

to be 0.108(4) eV − b and 0.54(2) respectively [15], in excellent agreement with the recent

experimental determinations, S(0) = 0.109(10) eV − b and
√

S3/2(0)

S1/2(0)
= 0.50(15) [20]. For

more data, Karpeshin et al derived an expression for the internal conversion (reaction (1)) in
the non-relativistic limit by the use of the Dirac wavefunctions [21]. The same procedure can
be repeated for the radiative width in the case of the M1 transition, as the latter expression
differs from the first one by replacement of the spherical Bessel function instead of the
Hankel one [22]. We substitute the experimental values of nuclear factors of [20] and ρ0 of
equation (22) into equation (3) to estimate the radiative fusion rates. The calculated radiative
fusion rates are compared with both the experimental [9] and the previous theoretical rates
[15], as given in table 2.
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Table 1. Optimal values of the pdµ parameters. A
( )
c is given in the unit of (1015 cm−3/2), the

parameter sets {β( )
c } and {α( )

c } are in the unit of (1010 cm−1).

Parameter Value

β ′
1 3.420

β1 −0.001
α′

1 3.752
α1 0.002
β ′

2 3.501
β2 −0.003
α′

2 3.834
α2 0.002
β ′

3 4.000
β3 −2.434
α′

3 4.001
α3 5.009
A′

1 12.608
A1 0.032
A′

2 13.090
A2 0.019
A′

3 7.999
A3 7.991

Table 2. The calculated radiative fusion rates (µs−1) and their comparison with both the
experimental [9] previous theoretical rates [15].

Calculated rate λ
γ

3/2 Previous theoretical rate [15] Experimental value [9]

0.08 0.107(6) 0.11(1)
Calculated rate λ

γ

1/2 Previous theoretical rate Experimental value

0.32 0.37(1) 0.35(2)

3. Conclusions

The results and view of this paper can be summarized as follows. The main idea of our
computation technique is the introduction of the new and simple wavefunction of equation (7).
First, the three coupled integro-differential equations for χ

J,ν
1 (R1), χ

J,ν
2 (R2) and χ

J,ν
3 (R3),

equation (10), are solved using a numerical procedure of Rung–Kutta 45. Then, the integration
of ρrpd

is simplified to
∣∣χJ=0,ν=0

3 (R3)
/
R3

∣∣2
at R3 → 0, by hand. The product of ρ0 and S3/2(0)

παcm3( S1/2(0)

παcm3

)
makes the quartet (doublet) rate value. As the present approach requires comparatively

six terms for the discussion on the molecular wavefunction, the mathematical work is easily
done. The obtained results are close to those previously reported, see table 2. The validity of
our approximation is only for R ≈ 0 to 1.9 × 10−8 cm. The main limitations of this method
for the problem under discussion are given as follows. The adiabatic approximation is used
in our work, i.e. we make integrations on the muon coordinates in each channel separately.
These include some physics limits. The wavefunction of equation (7) is employed to obtain
some molecular parameters, as averaged on the muon coordinates. In this method, the overlap
of the wavefunctions of the three channels is not considered. Although, the above mentioned
method is a powerful one. Kamimura used the three-channel method employing a molecular
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wavefunction [18], alternative to the present wavefunction. The results of his work were
very exact [18]. The accuracy of the present work decreases for larger J . For J � 2, poor
convergence occurs in the curve of χc(Rc). The corrections to the results of the non-relativistic
equation (10) such as the finite nuclear size, vacuum polarization, molecular environment,
relativistic terms become important for low states of pdµ. The present wavefunction is the
base data. The proposed variational method will be computationally convenient with respect
to some of the three-body calculations in further studies. Extensive calculations of collisions
of muonic atoms in the 1s state with hydrogen atoms (or molecules), the muon transfer in
the atomic cascade and the muon sticking in the pdµ cycle can be done with this variational
molecular wavefunction. The channel c = 3 is more suitable for the study of muon sticking.
The channels c = 1 and 2 are the most important for scattering of muonic atoms and muon
transfer. These calculations can be repeated for mass-nonsymmetric molecules such as ptµ.
Only the pdµ and ptµ molecules have important roles in the Ramsauer–Townsend (RT) effect
[10].
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